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ABSTRACT
It is well known that isosurfaces implicitly represented by volumetric data can be analytically rendered if a trilinear
interpolation is assumed to be applied for the continuous reconstruction. However, to the best of our knowledge,
it has not been investigated yet how this approach can be efficiently implemented on current GPUs and how much
the analytic intersection point calculations slow down the rendering process compared to the traditional discrete
approximation. In this paper, we propose a GPU friendly first-hit ray-casting algorithm that (1) minimizes the
number of texture fetches, (2) significantly simplifies the arithmetic operations, and (3) avoids error accumulation
during the ray traversal. We show that our analytic isosurface rendering optimized for the GPU is even faster than
an equidistant discrete sampling, if the sampling frequency is set such that a comparable image quality is obtained.
This is true even if the empty blocks of voxels are not processed along the rays. Therefore, the analytic approach
can completely replace the traditional first-hit ray-casting implementations. Additionally, we show that the core of
our algorithm can also be used for analytic Maximum Intensity Projection (MIP).
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1 INTRODUCTION
There are two fundamentally different approaches for
rendering isosurfaces contained in volumetric data. The
first one is indirect volume rendering by using the clas-
sical Marching Cubes (MC) algorithm [LC87], where
the isosurfaces are extracted from the volumetric rep-
resentation in a form of a triangular mesh. The other
one is direct volume rendering [Lev88], where along
each viewing ray just the first intersection point is de-
termined [PSL+98], for which the interpolated density
value is the same as the threshold that defines the iso-
surface. The drawbacks of the MC algorithm are the
following:

• If the initial volumetric data is of high resolution, the
MC algorithm produces a huge number of triangles.

• The computation of the triangular mesh is relatively
expensive, and it has to be repeated whenever the
user changes the isosurface threshold.
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• The resulting geometric model is not smooth enough
as it is a piecewise linear representation of the iso-
surface. The edges between the triangles become
apparent if we zoom into the details.

To reduce the complexity of the mesh, triangle deci-
mation algorithms [SZL92] were proposed, while for
a real-time recalculation of the mesh, fast GPU imple-
mentations can be used exploiting the geometry shader
[Gei08]. The roughness of the model, however, is more
difficult to handle. Higher-order surface-extraction al-
gorithms [The02, PVS+11] result in smoother isosur-
faces, but their preprocessing and rendering costs are
significantly higher. Although there exist constrained
surface-fairing algorithms [Nie04] that iteratively mod-
ify the positions of the vertices to minimize the global
curvature, the geometric model still remains piecewise
linear. In contrast, direct isosurface-rendering tech-
niques [PSL+98] provide visually more pleasing im-
ages than the MC algorithm, since in each cubic cell,
they reproduce a level set of a cubic polynomial that
is obtained by the trilinear interpolation. Direct isosur-
face rendering can be implemented on current GPUs
by using either texture slicing [WE98] or ray casting
[KW03]. While the former fits better to the architecture
of the GPU, the latter is more flexible for using more
sophisticated shading models [HLSR09]. In both cases,
the image quality depends very much on the sampling
frequency, that is, the number of texture fetches. On



the other hand, the rendering performance is inversely
proportional to the number of texture fetches. There-
fore, a given sampling frequency always determines a
trade-off between image quality and rendering speed.
To guarantee the best possible image quality for ren-
dering the isosurfaces of trilinearly reconstructed vol-
umes, an analytic calculation of the intersection points
was proposed on a parallel CPU architecture [PSL+98].
This approach has not been adapted to the GPU so far,
probably because of the following reasons:

• The cubic polynomial ray profiles inside a given
cell are analytically determined from the eight cor-
ner voxels. Using a direct GPU implementation,
this would require eight nearest-neighbor texture
fetches. However, for the same cost, eight trilinear
samples along the given ray segment can be evalu-
ated, which might already provide sufficient image
quality.

• The analytic intersection point calculation requires
the roots of a cubic polynomial. The root finding is
computationally expensive and has to handle several
special cases, which is not GPU friendly.

In this paper, we show that despite these counter-
arguments, an analytic first-hit ray casting can be
efficiently implemented on current GPUs after a
thorough revision of the original CPU-based algorithm
[PSL+98]. The contributions of our work are the
following:

• It is known that the cubic polynomial ray profiles in-
side the intersected cells can be determined by tak-
ing only three trilinear samples per cell in average
[AWC10], but this approach is first used in this pa-
per for analytic isosurface rendering. Furthermore,
we show that the roots of a cubic polynomial has
to be determined for only one cell along each ray.
For the other intersected cells, just the solution of a
second-degree equation is needed, which is easy and
efficient to obtain in the well-known closed form.

• As an analytic isosurface rendering requires precise
intersection points between the faces of the cells and
the rays, the accuracy of the applied ray-traversal al-
gorithm is of crucial importance. We show that the
previously applied incremental ray-traversal tech-
niques [AW87] produce substantial accumulated er-
ror on the GPU. Therefore, we propose an integer-
based ray traversal that completely avoids the error
accumulation.

• We thoroughly compare our analytic first-hit ray-
casting implementation to the traditional discrete ap-
proximation. We demonstrate that the traditional
discrete sampling can guarantee approximately the

same image quality only at the cost of a drastic over-
sampling. Therefore, it is slower than our analytic
solution.

• We show that the core of our first-hit ray-casting im-
plementation can also be used for analytic MIP ren-
dering, which produces much higher image quality
than the classical discrete approximation if the sam-
pling frequency is set such that the rendering times
are nearly the same.

2 RELATED WORK
An analytic ray profile evaluation [SGS95] was first
proposed for MIP rendering [HMS95, SSN+98,
MKG00, KJ08]. This approach was then adapted
to first-hit ray casting [LC96, PSL+98]. All these
methods were implemented on CPU architectures.
Therefore, they calculate the analytic ray profile inside
a cubic cell from its eight corner voxels. However,
the direct implementation of this kind of evaluation
on the GPU is inefficient, since the costly texture
fetches reduce the performance. Recently, it has been
shown that the analytic ray profiles inside the cubic
cells can be determined from four trilinear samples
[AWC10] as well, but this technique was proposed for
a completely different purpose, namely, to obtain the
extrema of the ray profiles for a precise preintegrated
volume rendering [EKE01]. In this paper, we apply
a similar approach, but for fast first-hit ray casting,
and show that it is more efficient than the traditional
discrete sampling, while it provides the best possible
image quality if a trilinear interpolation is assumed.
Although an optimized and numerically stable method
has already been published [MKWF04] to analytically
find the first intersection point inside a cell, to the
best of our knowledge, we are the first to recognize
that the computationally expensive root finding in
the cubic polynomial ray profiles is not necessary
for each single cell intersected by the given ray, and
it has to be performed at most only once inside that
particular cell, where the ray does hit the isosurface.
Therefore, our major goal is to efficiently find this cell
for each ray rather than to optimize the root finding
[MKWF04]. Our algorithm is novel also regarding the
applied ray-traversal technique. An analytic ray profile
evaluation requires accurate entry and exit points
for each cell. For this purpose, usually incremental
algorithms [AW87, CW88] are applied. Nevertheless,
we show that due to the floating-point state variables,
these algorithms result in significant accumulated
error on the GPU, which contradicts to the goal of the
analytic ray profile evaluation. Therefore, we propose
an improved ray-traversal algorithm that is based on
integer state variables, and as such does not introduce
an accumulated error. Although there exist similar
integer-based ray-traversal methods [LZY04, LSZ08],



they determine only the intersected voxels without
calculating the corresponding entry and exit points.

3 ANALYTIC FIRST-HIT RAY CAST-
ING ON THE GPU

Our method processes the intersected cubic cells along
each ray in front-to-back order. Inside each cell it is
checked whether the ray hits the isosurface. This is
done by analytically evaluating the extrema of the ray
profile inside the given cell, which requires just the so-
lution of a second-degree equation. If the isosurface
threshold is between the minimum and the maximum
of the ray profile, there must be an intersection point in
the given cell, which is analytically determined by solv-
ing a third-degree equation. If the isosurface threshold
is lower than the minimum of the ray profile or it is
greater than the maximum of the ray profile then there
is no intersection point in the current cell, so the next in-
tersected cell needs to be processed. Overall, a compu-
tationally expensive solution of a third-degree equation
is necessary at most only once for each ray, which is of
negligible cost compared to the processing of all those
cells, where the ray does not intersect the isosurface.
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Figure 1: Trilinear interpolation.

4 TRILINEAR INTERPOLATION

Our algorithm assumes that the density function inside
the cubic cells is reconstructed by a trilinear interpo-
lation (see Figure 1). Although higher-order filters,
such as the tricubic B-spline or the Catmull-Rom spline
[MMK+98], provide higher image quality than the tri-
linear filter, they are an order of magnitude slower to
evaluate on current GPUs even if the hardwired trilin-
ear texture fetching is utilized in their implementation
[SH05]. This is the major reason why the trilinear in-
terpolation is still a de facto standard in the practice of
interactive volume visualization.

5 ANALYTIC RAY PROFILES
It is easy to see that the trilinear interpolation results in
piecewise cubic ray profiles. The parametric equation
of a ray is expressed as follows:

r = r0 +d · t, (1)

where r = [x,y,z]T is an arbitrary point along
the ray, r0 = [x0,y0,z0]

T is the starting position,
d = [dx,dy,dz]T is the direction of the ray, and t is the
ray parameter. Substituting Equation 1 into the trilinear
interpolation formula (Figure 1), we obtain the ray
profile inside a cubic cell as a cubic polynomial of the
ray parameter t:

f (t) = at3 +bt2 + ct +d. (2)

Sakas et al. [SGS95] proposed to determine the poly-
nomial coefficients a, b, c, and d from the densities
of the eight corner voxels. This evaluation scheme
has originally been proposed for a CPU implementa-
tion [SGS95, LC96, PSL+98]. On the GPU, however,
it is rather inefficient because of two reasons. First,
it requires too many arithmetic operations. Second, it
relies on eight nearest-neighbor texture fetches, which
take approximately the same time as the evaluation of
eight equidistant trilinear samples along the ray seg-
ment that is intersected by the given cell [SH05]. Gen-
erally, such a drastic oversampling already guarantees a
sufficiently high image quality. Therefore, a direct GPU
implementation of the method by Sakas et al. [SGS95]
does not pay off, since for the same computational
cost it is not expected to provide significantly higher
quality than the traditional GPU implementation. In-
stead, we use a much simpler GPU-friendly evalua-
tion scheme that well exploits the hardwired trilinear
texture-fetching functionality. Our goal is to avoid all
the nearest-neighbor texture fetches, and to determine
the polynomial coefficients a, b, c, and d from the min-
imal number of trilinear samples. Since f (t) is a cubic
polynomial, it is unambiguously defined by its values
at four different parameters t1, t2, t3, t4. Additionally,
f (t) is defined by a trilinear interpolation in a position
that corresponds to parameter t. Therefore, we have to
find four different positions along the ray segment that
is intersected by the given cubic cell. Without a loss
of generality, let us assume that t = 0 and t = 1 belong
to the entry and exit points, respectively. In between,
we apply a uniform subdivision, which results in four
different parameters: t1 = 0, t2 = 1/3, t3 = 2/3, t4 = 1.
The corresponding values of f (t) are

f1 = f (0) = d, (3)
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f4 = f (1) = a+b+ c+d.

From these four equations, the four unknown coeffi-
cients a, b, c, and d can be determined as follows:

a =−9
2

f1 +
27
2

f2−
27
2

f3 +
9
2

f4, (4)

b = 9 f1−
45
2

f2 +18 f3−
9
2

f4,

c =−11
2

f1 +9 f2−
9
2

f3 + f4,

d = f1.

Thus, inside a cubic cell, an analytic ray profile is de-
rived from four trilinear samples f1, f2, f3, and f4. In
a GPU implementation, this is approximately twice as
fast as the brute-force approach that derives the polyno-
mial coefficients from eight nearest-neighbor samples
[SGS95]. The derivation of the cubic polynomial ray
profile from four trilinear samples is not new, since it
was previously proposed by Ament et al. [AWC10].
However, it was not their goal to use this analytical form
for first-hit ray casting. Instead, they produced a piece-
wise linear representation that has the same local ex-
trema as the cubic polynomial ray profile. The obtained
piecewise linear ray profiles were then used for preinte-
grated direct volume rendering [EKE01]. Although this
approach leads to a more general ray-casting implemen-
tation that can also be used for isosurface rendering, the
intersection points between the rays and the isosurface
are still not determined analytically.

6 EXTREMA OF THE RAY PROFILES
The ray profile can take its local extrema at those values
of parameter t, where its derivative is equal to zero:

f ′(t) = 3at2 +2bt + c = 0. (5)

Since this is a second-degree equation, the two roots
can be easily determined as

−b±
√

b2−3ac
3a

. (6)

If a root is greater than zero and less than one (the cor-
responding position is inside the given cubic cell), it
is substituted into f (t) to obtain a potential extremum.
Additionally, the ray profile can also take its extrema
at the entry and exit points. Therefore, f1 and f4 can
also be potential maxima or minima. On the whole, the
maximum and the minimum of four candidates have to
be taken for each cell intersected by the given ray. Note
that the entry point of a cubic cell is the same as the
exit point of the previous cell. Therefore, only three tri-
linear samples need to be evaluated for each additional
intersected cell. On current GPUs the bottleneck is the
texture fetching, so the cost of the arithmetic operations
necessary for the root finding is negligible compared to
that of the three texture lookups.

7 INTEGER-BASED RAY TRAVERSAL

An analytic reconstruction of the ray profile within a
cell requires the precise locations of the points, where
the ray enters and leaves the cell. This means that dur-
ing the ray traversal, the intersections of the ray with
the planes separating the neighboring cells need to be
calculated. An important characteristic of the intersec-
tion points is that one coordinate is always an integer,
while the other two coordinates are typically fractional
values. Many efficient algorithms have been developed
for ray traversal through a voxel grid, but either they
only determine the intersected voxels and do not ex-
plicitly calculate the entry/exit points [LZY04, LSZ08],
or they employ incrementally updated floating-point
variables [AW87, CW88]. Incremental algorithms im-
plemented with floating-point arithmetic are prone to
the accumulation of rounding errors, which eventually
leads to traversing the wrong cells. This is especially
a crucial problem in a GPU implementation, where
double-precision floating-point arithmetic is not uni-
versally supported yet. Therefore, we propose a new
ray-traversal algorithm for 3D voxel grids, which pro-
vides better accuracy than existing algorithms, while
still remaining computationally efficient. The proposed
algorithm avoids error accumulation during ray traver-
sal and is particularly well-suited for GPU implementa-
tions.

The basic idea behind our algorithm is similar to that
of the classic DDA algorithms [AW87, CW88]. Dur-
ing ray traversal, we keep track of the current position
and the possible candidates for the next ray/cell inter-
section. In each step, the closest intersection is selected
and the state variables are updated accordingly. Instead
of tracking the distances to the next intersections along
the ray, the integer coordinates of the intersections are
tracked and the relative distances are derived from these
integers in each step. In the following, we present in
detail how our algorithm works in 2D. Due to its sym-
metrical nature, it can be trivially extended to 3D by
adding the appropriate variables for the z-coordinate.
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Figure 2: Integer-based ray traversal.



Figure 2 illustrates the operation of the algorithm. Let
us denote the start and end points of the traversed ray
segment by P1(x1,y1) and P2(x2,y2), respectively. In
the initialization phase, we calculate a couple of val-
ues that will be constant during the ray traversal. The
differences between the endpoint coordinates are:

deltax = x2− x1,

deltay = y2− y1.

The length of the ray segment is:

length = |P2−P1|.

The per-unit distance increments along the ray for each
coordinate axis are:

deltaInvx = length/deltax,

deltaInvy = length/deltay.

If the ray is parallel to one of the coordinate axes then
deltax or deltay is zero. In that case, the inverse value
can be set to some arbitrarily large value. We also pre-
calculate the integer coordinate increment per step for
each axis, which is either 1 or -1 depending on the ray
direction:

stepx =−1 if deltax < 0,1 otherwise,

stepy =−1 if deltay < 0,1 otherwise.

The algorithm proceeds as follows. Assume that the
current position, where the ray intersects a grid line is
at the point P in Figure 2. The intersections with the
next vertical and horizontal grid lines are denoted by X
and Y , respectively. The distance from P1 to X can be
calculated as

dx = (xnext − x1)∗deltaInvx.

Similarly, the distance from P1 to Y is

dy = (ynext − y1)∗deltaInvy.

Comparing the distances, we can decide which inter-
section is closer to the starting point P1 (and there-
fore, also to the current position P) and advance to that
point along the ray. If dx < dy, as is the case in Fig-
ure 2, then the intersection with the vertical grid line is
closer, so xnext is incremented by the value of stepx. If
dy < dx then ynext is incremented by the value of stepy.
If dx = dy, that is, the ray passes through a cell cor-
ner, both xnext and ynext are incremented. The current
position along the ray can be derived from the distance
belonging to the current intersection (either dx or dy)
and the initial ray parameters:

P = P1 +dist ∗dir,

where dir is the normalized direction vector of the ray.
Note that the explicit value of the current position is
not used for finding the next intersection, so numerical
inaccuracies in its computation do not affect the next
step. The initial values of xnext and ynext are calculated
as follows. First, the coordinates of the previous inter-
sections of the ray with the grid are determined. This is
calculated by rounding the starting position to the near-
est integer coordinates in the direction opposite to the
ray direction. This means that the coordinate is rounded
down if the ray direction along the corresponding axis
is positive, and rounded up if the direction is negative,
yielding the values xprev and yprev. Then the per-step
increment is added to them to obtain the initial values
for the next intersections:

xprev = ceil(x1) if deltax < 0, f loor(x1) otherwise,

yprev = ceil(y1) if deltay < 0, f loor(y1) otherwise,

xnext = xprev + stepx,

ynext = yprev + stepy.

The only dynamic state variables that are required for
the ray traversal are the grid coordinates of the next
intersection for each axis. These are integer values,
as well as the increment in each step. Consequently,
our algorithm can be implemented without any dynamic
floating-point state variable, thus avoiding the accumu-
lation of the rounding errors. While being numerically
much more stable, it is nearly as efficient computa-
tionally as the widely used Amanatides-Woo algorithm
[AW87], as it requires only one additional floating-
point multiplication per iteration step. Another advan-
tage is that it can be implemented without any condi-
tional branching, which is an important aspect of a fast
GPU implementation. The pseudo code of the algo-
rithm in 2D is shown in Listing 1.
void RayTrave r sa l2D ( i n t x1 , i n t y1 , i n t x2 , i n t y2 )
{
i n t iNextX , iNextY ; i n t iStepX , iS tepY ;

i n t d e l t a X = x2 − x1 , d e l t a Y = y2 − y1 ;
f l o a t l e n g t h =

s q r t ( d e l t a X ∗ d e l t a X + d e l t a Y ∗ d e l t a Y ) ;
f l o a t di rX = d e l t a X / l e n g t h ;
f l o a t di rY = d e l t a Y / l e n g t h ;
f l o a t d e l t a I n v X = l e n g t h / d e l t a X ;
f l o a t d e l t a I n v Y = l e n g t h / d e l t a Y ;
i f ( d e l t a X < 0) iS tepX = −1; e l s e iS tepX = 1 ;
i f ( d e l t a Y < 0) iS tepY = −1; e l s e iS tepY = 1 ;
i f ( d e l t a X < 0) prevX = c e i l ( x1 ) ;
e l s e prevX = f l o o r ( x1 ) ;
i f ( d e l t a Y < 0) prevY = c e i l ( y1 ) ;
e l s e prevY = f l o o r ( y1 ) ;
iNextX = prevX + iS tepX ; iNextY = prevY + iS tepY ;

f l o a t d i s t = 0 . 0 ;
do

{
f l o a t x = x1 + d i s t ∗ dirX , y = y1 + d i s t ∗ di rY ;
P r o c e s s C e l l ( x , y ) ;
f l o a t dx = ( iNextX − x1 ) ∗ d e l t a I n v X ;
f l o a t dy = ( iNextY − y1 ) ∗ d e l t a I n v Y ;
f l o a t d i s t = min ( dx , dy ) ;
i f ( dx == d i s t ) iNextX = iNextX + iS tepX ;



i f ( dy == d i s t ) iNextY = iNextY + iS tepY ;
} whi le ( d i s t < l e n g t h )

}

Listing 1: Pseudo code of our ray-traversal algorithm in
2D.

The 2D version is easy to extend to 3D by adding
the appropriate variables for the z-coordinate. Note
that within the traversal loop, only the iNextX
and iNextY variables are updated incrementally
by iStepX and iStepY, and these are defined as
integers. The other variables are typically implemented
in floating-point format, although depending on the
application, some of them may be integers as well.

7.1 Implementation on the GPU
The GLSL shader code shown in Listing 2 demon-
strates how the algorithm can be implemented by ex-
ploiting vector operations to eliminate any conditional
branching.
void R a y T r a v e r s a l ( vec3 s t a r t P o s , vec3 endPos )
{
f l o a t l e n g t h ; / / l e n g t h o f t h e ray
vec3 r a y ; / / ray v e c t o r
vec3 d i r ; / / n o r m a l i z e d ray d i r e c t i o n
vec3 d e l t a I n v ; / / d i s t a n c e i n c r e m e n t per g r i d u n i t
i v e c 3 i S t e p ; / / +/−1 f o r each a x i s

/ / depend ing on t h e ray d i r e c t i o n
i v e c 3 i N e x t ; / / n e x t p l a n e i n t e r s e c t i o n

/ / i n each d i r e c t i o n
f l o a t d i s t ; / / c u r r e n t d i s t a n c e from

/ / t h e s t a r t i n g p o i n t

r a y = endPos − s t a r t P o s ;
l e n g t h = l e n g t h ( r a y ) ;
d i r = n o r m a l i z e ( r a y ) ;
bvec3 i s D i r N e g a t i v e = l e s s T h a n ( d i r , vec3 ( 0 ) ) ;

/ / a v o i d d i v i s i o n −by−z e r o
r a y = mix ( ray , vec3 (1 e−6) ,

l e s s T h a n ( abs ( r a y ) , vec3 (1 e −6 ) ) ) ;
d e l t a I n v = vec3 ( l e n g t h ) / r a y ;
i S t e p = i v e c 3 ( 1 ) − i v e c 3 ( 2 ) ∗ i v e c 3 ( i s D i r N e g a t i v e ) ;

/ / round s t a r t i n g p o s i t i o n t o t h e
/ / p r e v i o u s g r i d i n t e r s e c t i o n
vec3 p rev = mix ( f l o o r ( s t a r t P o s ) ,

c e i l ( s t a r t P o s ) , i s D i r N e g a t i v e ) ;
i N e x t = i v e c 3 ( p rev ) + i S t e p ;

d i s t = 0 . 0 ;
do

{
/ / p r o c e s s c e l l a t c u r r e n t p o s i t i o n
vec3 pos = fma ( vec3 ( d i s t ) , d i r , s t a r t P o s ) ;
P r o c e s s C e l l ( pos ) ;

/ / c a l c u l a t e t h e d i s t a n c e t o t h e n e x t
/ / i n t e r s e c t i o n f o r each a x i s
vec3 dNext =

( vec3 ( i N e x t ) − s t a r t P o s ) ∗ d e l t a I n v ;

/ / p i c k t h e c l o s e s t i n t e r s e c t i o n
d i s t = min ( min ( dNext . x , dNext . y ) , dNext . z ) ;

/ / s t e p a long each a x i s t h a t goes
/ / t h r o u g h t h e i n t e r s e c t i o n p o i n t
bvec3 s t e p =

l e s s T h a n E q u a l ( dNext , vec3 ( d i s t ) ) ;
i N e x t += i S t e p ∗ i v e c 3 ( s t e p ) ;

} whi le ( d i s t < l e n g t h ) ;
}

Listing 2: GLSL code of our ray-traversal algorithm in
3D.

The function ProcessCell() is responsible for pro-
cessing the cell that the ray enters at the current posi-
tion. Note that some care must be taken for the cal-
culation of deltaInv to avoid a possible division by
zero. Also, we use the lessThanEqual comparison
instead of equal for the sake of cautiousness.

7.2 Numerical Accuracy of the Ray
Traversal

We have compared the accuracy of our algorithm to
an optimized version of the Amanatides-Woo algorithm
[AW87]. We implemented both methods in GLSL
within the Voreen visualization framework.

(a) (b)

(c) (d)

Figure 3: Visualization of the accumulated error for the
Amanatides-Woo algorithm [AW87] ((a) - (c)), and for
our integer-based ray-traversal algorithm (d). The res-
olutions of the grids are 163 (a), 323 (b), 643 (c), and
2563 (d).

Figure 3 shows the visualization of the accumulated er-
ror. We calculated an error value in each step during the
ray traversal, indicating the distance of the intersection
position from the nearest grid plane. The absolute error
values are summed along the ray. The corresponding
pixel is colored according to the accumulated error. Ide-
ally, the accumulated error should be zero, resulting in a
completely black image. As we can see, this is the case
for our integer-based algorithm. In contrast, the images
corresponding to the floating-point-based Amanatides-
Woo algorithm indicate that the accumulated error is
already quite significant even for a low-resolution grid,
and increases if the data resolution gets higher. A bright
red color represents an accumulated error of 3.0 in grid
units.

8 RESULTS
Figure 4 shows the results of our analytic first-hit ray
casting for three different test data sets. For the same
voxel/pixel ratio, an equidistant discrete sampling of



Figure 4: Images rendered by our analytic first-hit ray-casting algorithm.

the same computational cost provides similar image
quality, but if we zoom into the details as demonstrated
in Figure 5, the analytic approach is clearly superior.
Measuring the running times (see Figure 5), we found
that the bottleneck of the first-hit ray casting is indeed
the texture fetching as it was expected. Note that an
oversampling by a factor of four, which is already
slower than our analytic evaluation, still results in
visible sampling artifacts, while the analytic solution
guarantees the best possible image quality for a tri-
linearly reconstructed volume. Although the trilinear
interpolation kernel itself introduces postaliasing
artifacts [ML94], at least the sampling artifacts are
completely removed. The postaliasing artifacts could
be suppressed by higher-order filters [MMK+98], for
which the degree of the polynomial ray profiles is
higher than three. In this case, however, the analytic
root finding would be much more complicated and
it could hardly be efficiently implemented on the
GPU. Therefore, we think that our approach is a
good compromise between rendering speed and image
quality.

9 ADAPTATION TO MIP
Our first-hit ray-casting implementation is easy to adapt
to MIP rendering. The core of the algorithm analyti-
cally determines the extrema of the cubic polynomial
ray profiles in cells intersected by the given ray. There-
fore, we have to visit all intersected cells and take
the global maximum. Note that, for this purpose only
second-degree equations need to be solved, and in aver-
age only three trilinear texture fetches per cell are nec-
essary. Similarly to the first hit-ray casting, the analytic
evaluation takes approximately the same time as a tradi-
tional discrete sampling taking three texture fetches per
cell. Figure 6 shows the visual comparison of our an-
alytic MIP evaluation to the traditional MIP rendering.
The images were rendered practically at the same frame
rate, since in case of traditional MIP, we set a sampling
frequency that ensured nearly the same rendering speed
as the analytic MIP evaluation. Note that our analytic
MIP completely removes the sampling artifacts.

10 CONCLUSION
In this paper, we have shown that both isosurfaces and
MIP images can be rendered interactively on current
GPUs using an analytic evaluation. This approach re-
sults in the best possible image quality if a trilinear in-
terpolation is assumed. Furthermore, the user does not
have to specify the sampling rate as an additional pa-
rameter. We demonstrated that the analytic evaluation
practically does not require a computational extra cost,
since the traditional equidistant sampling is slower if
the sampling frequency is set such that a comparable
image quality is obtained. We have optimized our al-
gorithm onto the GPU by reducing the number of tex-
ture fetches, simplifying the arithmetic operations, and
avoiding the conditional branching. Moreover, to avoid
the accumulation of the rounding errors, we developed
a novel integer-based ray-traversal algorithm. Overall,
according to our results, we believe that the analytic
evaluation for both isosurface rendering and MIP can
completely replace the traditional implementation that
is based on a discrete approximation.
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0.113 seconds 0.152 seconds 0.164 seconds
Traditional first-hit ray casting using an oversampling by a factor of two.

0.126 seconds 0.186 seconds 0.204 seconds
Traditional first-hit ray casting using an oversampling by a factor of three.

0.138 seconds 0.22 seconds 0.244 seconds
Traditional first-hit ray casting using an oversampling by a factor of four.

0.132 seconds 0.204 seconds 0.238 seconds
Our analytic first-hit ray casting.

Figure 5: Comparison of our analytic first-hit ray casting to traditional equidistant sampling in terms of visual
quality. The rendering times were measured on an AMD Radeon HD5670 1GB graphics card.



Traditional MIP using discrete sampling. Analytic MIP.

Figure 6: Comparison of our analytic MIP evaluation to traditional MIP in terms of visual quality.


